

PROJECT LOCATION

PROJECT BACKGROUND

- Section 206 project with Oregon Department of Fish and Wildlife
- Languished for more than a year with no progress on feasibility study
- Sponsor issued ultimatum do the following or quit project
 - Construction by next summer
 - Rosgen type design
 - Meander pattern
- feasibility study started in earnest in August 2000
- Construction began on October 8 2001
- Bankfull event April 14, 2002

Project Details

- 1-mile in length
- Rosgen based design
- Totally new alignment for 1,300 ft reach to create meandering alignment and new section throughout
- 18 cross vanes and 48 J-hooks used
- Time and materials type of construction contract also was an 8(a) contract
- Some HEC modeling for floodplain management

DESIGN ALIGNMENT

TYPICAL CROSS VANE

Objectives (Risk Metrics)

- Reduce width and increase depth
- Reduce water temperatures
- Reconnect floodplain & establish riparian zone
- Increase riffles and pools
- Stabilize channel

Reduce Width & Increase Depth

- Prior to Restoration
 - Wide and flat bottomed
 - 28 76 ft bankfull width with average of 39 ft
- After Construction
 - Average bankfull width 28 ft.
 - Late summer flows consolidated into 10 ft wide low flow channel

Water Temperature Reduction

- Short term
 - Consolidated low flows
- Long term
 - Establish canopy over channel
 - Wide riparian zone with shaded flood plane area

Reconnect Floodplain / Establish Riparian Zone

Increase Riffles & Pools/Stabilize Channel

- 84% of cross vanes and J-hooks performed well
- 16% performed poorly resulting in bank erosion, sediment deposition blocking channel, sediment filling pools, and over bank flows when flow should have been contained in-channel
 - Problems more obvious in C type channel reach
- Aggradation occurring at one of the meanders

Profile for Thalweg

Profile for Bankfull

- •Trying to work stone down to design elevation (note is too high)
- •Surveyed surface often underwater in poor visibility conditions

Water Surface Profile

Conclusions

- Project is overall successful, but not yet tested for events larger than bankfull
- For the areas that do show problems, primary risk stems from the type of construction contract and level of QA/QC
 - Pool depth and channel stability threatened by survey control problems during construction
 - Conventional construction contract not acceptable in this case (time and materials contract vs. no project)
 - Cost to fix survey control problems estimated at approximately \$30k
- Moderate erosion in some areas may have been avoided by considering modeled water surface
- Anticipate fixing errors for minor cost and achieving objectives for pool depth and channel stability